5 research outputs found

    Studies in particle swarm optimization technique for global optimization.

    Get PDF
    Ph. D. University of KwaZulu-Natal, Durban 2013.Abstract available in the digital copy.Articles found within the main body of the thesis in the print version is found at the end of the thesis in the digital version

    On the Performance of Linear Decreasing Inertia Weight Particle Swarm Optimization for Global Optimization

    Get PDF
    Linear decreasing inertia weight (LDIW) strategy was introduced to improve on the performance of the original particle swarm optimization (PSO). However, linear decreasing inertia weight PSO (LDIW-PSO) algorithm is known to have the shortcoming of premature convergence in solving complex (multipeak) optimization problems due to lack of enough momentum for particles to do exploitation as the algorithm approaches its terminal point. Researchers have tried to address this shortcoming by modifying LDIW-PSO or proposing new PSO variants. Some of these variants have been claimed to outperform LDIW-PSO. The major goal of this paper is to experimentally establish the fact that LDIW-PSO is very much efficient if its parameters are properly set. First, an experiment was conducted to acquire a percentage value of the search space limits to compute the particle velocity limits in LDIW-PSO based on commonly used benchmark global optimization problems. Second, using the experimentally obtained values, five well-known benchmark optimization problems were used to show the outstanding performance of LDIW-PSO over some of its competitors which have in the past claimed superiority over it. Two other recent PSO variants with different inertia weight strategies were also compared with LDIW-PSO with the latter outperforming both in the simulation experiments conducted

    Improved Particle Swarm Optimization with a Collective Local Unimodal Search for Continuous Optimization Problems

    No full text
    A new local search technique is proposed and used to improve the performance of particle swarm optimization algorithms by addressing the problem of premature convergence. In the proposed local search technique, a potential particle position in the solution search space is collectively constructed by a number of randomly selected particles in the swarm. The number of times the selection is made varies with the dimension of the optimization problem and each selected particle donates the value in the location of its randomly selected dimension from its personal best. After constructing the potential particle position, some local search is done around its neighbourhood in comparison with the current swarm global best position. It is then used to replace the global best particle position if it is found to be better; otherwise no replacement is made. Using some well-studied benchmark problems with low and high dimensions, numerical simulations were used to validate the performance of the improved algorithms. Comparisons were made with four different PSO variants, two of the variants implement different local search technique while the other two do not. Results show that the improved algorithms could obtain better quality solution while demonstrating better convergence velocity and precision, stability, robustness, and global-local search ability than the competing variants

    An Investigation into the Performance of Particle Swarm Optimization with Various Chaotic Maps

    No full text
    This paper experimentally investigates the effect of nine chaotic maps on the performance of two Particle Swarm Optimization (PSO) variants, namely, Random Inertia Weight PSO (RIW-PSO) and Linear Decreasing Inertia Weight PSO (LDIW-PSO) algorithms. The applications of logistic chaotic map by researchers to these variants have led to Chaotic Random Inertia Weight PSO (CRIW-PSO) and Chaotic Linear Decreasing Inertia Weight PSO (CDIW-PSO) with improved optimizing capability due to better global search mobility. However, there are many other chaotic maps in literature which could perhaps enhance the performances of RIW-PSO and LDIW-PSO more than logistic map. Some benchmark mathematical problems well-studied in literature were used to verify the performances of RIW-PSO and LDIW-PSO variants using the nine chaotic maps in comparison with logistic chaotic map. Results show that the performances of these two variants were improved more by many of the chaotic maps than by logistic map in many of the test problems. The best performance, in terms of function evaluations, was obtained by the two variants using Intermittency chaotic map. Results in this paper provide a platform for informative decision making when selecting chaotic maps to be used in the inertia weight formula of LDIW-PSO and RIW-PSO
    corecore